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SUMMARY

This paper describes a simple numerical model for hurricane track prediction which uses a

multigrid method to adapt the model resolution as the vortex moves. The model is based on

the modified barotropic vorticity equation, discretized in space by conservative finite differences

and in time by a Runge-Kutta scheme. A multigrid method is used to solve an elliptic problem

for the streamfunction at each time step. Nonuniform resolution is obtained by superimposing

uniform grids of different spatial extent; these grids move with the vortex as it moves. Preliminary

numerical results indicate that the local mesh refinement allows accurate prediction of the

hurricane track with substantially less computer time than required on a single uniform grid.

INTRODUCTION

Accurately predicting the track of a moving hurricane is a problem of great practical

importance. One approach is to treat the problem as one in computational fluid dynamics, taking

observed meteorological data as initial values for a numerical model. Many factors influence

the accuracy of this approach, including the initial data (or lack thereof), the dynamical and

physical processes included in the model, and the numerical scheme employed. While the relative

importance of these three factors is a subject of considerable debate, in this paper we focus on the
third.

Our premise is that predicting the track of a moving hurricane accurately requires resolving

the flow field adequately on both the large scale surrounding the vortex and the small scale within

the vortex itself. Since the spatial scales involved may differ by more than an order of magnitude,

models using uniform resolution are inherently less efficient than what should be possible. Here,

we use a simple dynamical model which has been used successfully by many authors (ref. 1, 2, 3),

namely, the modified barotropic vorticity equation. However, rather than use a single uniform

grid as in those studies, we investigate the use of adaptive multigrid techniques, with the goal

of obtaining high accuracy at low computational cost. In the following sections we detail the

formulation of the model, describe the mesh refinement scheme, and present some preliminary
numerical results.
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MODEL FORMULATION

GoverningEquations

We formulatethe model on a section of the sphere using a Mercator projection (true at latitude

¢ = ¢c)- The model consists of the modified barotropic vorticity equation

0¢ 0¢ um_V2 ¢,
i)---t+ m'2 g(¢' _) + _moxx =

(1)

where the relative vorticity _ and streamfunction ¢ are related by

(m2V2 _ .y2) _b = _. (2)

Here V 2 = 02/Ox -' + O-'/Oy 2, J(¢, ¢) is the Jacobian of (¢, _) with respect to (x, y), fl = 2_ cos ¢/a

(with a and fl the radius and rotation rate of the earth), and m = cos 0,_/cos ¢ is the map
factor. There are two quasi-physical parameters: the diffusion coefficient v, and the parameter 3,

(inverse of the effective Rossby radius) which helps prevent retrogression of ultraiong Rossby waves

(ref. 4). We also consider versions on the f-plane (m = 1 and _ = 0) and fl-plane (m = 1

and fl = 2f_ cos ¢,/a). The model domain is a rectangle in x and y centered at (x, y) = (0, 0),

where (A, ¢) = (A,, ¢,). At the boundaries we specify the streamfunction ¢ (and thus the normal

component of the velocity); where there is inflow, we also specify the vorticity _.

Space Discretization

On a single uniform rectangular grid gth consisting of gridpoints (xi, y.t) with mesh spacing h in

x and y, we discretize (1) and (2) in space by finite differences as

dt + my_,..,(¢,_)+ fi, m,O, _p,, = vm_V_.,_,..,
(3)

and

,,,j = c,j, (4)
_h

respectively. Here i.i(_P, ¢) is the discrete Jacobian of Arakawa (ref. 5), and 07 _i.j and

V_ _¢,,j are the O(h _) centered difference approximations to O¢/Ox and the Laplacian operator,
respectively. We apply (3) and (4) at the interior points. At boundary points where there is inflow,

¢ is specified; otherwise, we predict ¢ on the boundaries by applying an equation of the form (3)

but using appropriate one-sided differences. It should be noted that using the Arakawa Jacobian

is crucial here: the fact that it conserves discrete analogues of vorticity, enstrophy (mean square

vortieity), and kinetic energy implies that the model is not subject to nonlinear computational

instability.
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To write the space-discretized equations in a more compact form, we collect the values t#,..J and

(_,_ into grid functions ?¢.1,and (/, respectively, defined on the grid fY'. We can then write (3) and

(4) as

d(" _ Ft,(¢h,(/, ) (5)
dt

and

= (h, (6)

where the operators F h and G/' express the space discretization described above.

Time Discretization

To discretize (5) and (6) in time we use the classical fourth-order Runge-Kutta (RK4) scheme.

To describe it, we specify a time step At > 0 and introduce time levels tt -- kAt for k = 0, ....

Suppressing the superscript h for simplicity, we now use the superscript k to denote values at time

level k, e.g., _ _ ¢1'(t_). With this notation, the RK4 scheme can be written as

_t,+½ _ (t _ F t" := F(¢t,, (t,),

}At

(_+i-(__ _,+½ := F(_/,+½,_+½) '

• 1 . 1
(t+l _ (* _ Ft'+ { := g(@+_,(_+_),

At

At

=

=

(7)

where

1 21bt+_ 2Ft+½ _bt+J)l#'t÷l = g (Ft+ + + . (8)

Thus, to execute a single time step tt, _ tj,+l, we perform the four stages indicated in (7); each of

these stages consists of computing F based on known values of tb and _, predicting a new vorticity

(, and solving the diagnostic equation for the corresponding streamfunction _b.

Although it requires four times as much work (per time step) as the second-order Adams-

Bashforth scheme commonly used in such models, this RK4 scheme has several advantages. First,

it allows time steps at least four times as large, so in fact it is more efficient. Second, it is more

accurate, so time discretization errors are less likely to distort the conservation properties of the

Arakawa Jacobian. Finally, since it is a one-step scheme, it has no computational modes and needs

no other method for the initial time step.
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Multigrid Solution

To solve the diagnostic equation at each stage for the streamfunction ¢, we use a multigrid

method. For the relaxation scheme we use a point Gauss-Seidel method formulated as follows. The

discrete (interior) equation (4) can be written as

1 _,.i
(L¢),,) = _ (a,¢,.., - S,..,) - :, - F,._, (9)

• 7Tt_

where

S,.I :-_- _)i-l,j at- ¢,q-l.•j -}-_),,j-I + ¢,.1+1

is the sum of the neighboring values of ¢ and

(lO)

-y2h2
o-j := 4 + ., (11)

m;

is the diagonal term of the discrete Heimholtz operator. Given an approximate solution ¢ of (9),

we relax at a point (i, j) by changing the value there to satisfy the corresponding equation (9); this
results in the new value

_bi,j = h-F'"i + _''j , (12)
aj

where Si,.j is defined using the current surrounding values in (10). The corresponding residual (if

needed) is given by

1 a_ (¢ia- C, j) (13)

We use this relaxation (with red-black ordering) as a smoother in a muitigrid method, using half-

injection for the fine-to-coarse transfer of residuals and bilinear interpolation for the coarse-to-fine

transfer of corrections. For the control algorithm we use repeated V(1,1)-cycies:

LOCAL MESH REFINEMENT

Given the premise that the flow near the center of the vortex requires much higher resolution

than the flow surrounding the vortex, we now consider how to provide such variable resolution.

Our basic method is essentially that of (ref. 6), constructing nonuniform resolution by

superimposing uniform grids of varying spatial extent. Since all calculations are carried out on the

uniform grids, programming remains relatively easy.

To illustrate the method, let us consider first the case of two grids: a coarse grid gt -'h covering

the whole domain gt, and a fine grid F_h which covers only a portion of the domain (i:e v enclosing

the vortex). We assume that the boundaries of the fine grid coincide with coarse grid lines. The

model variables ff and ¢ are carried on both the coarse and fine grids (denoted by if_,1, eel, and ffh

Ch respectively). Noting that the coarse grid allows time steps twice as large as those on the fine

grid, we use the following basic procedure for stepping the model from time t_ to t_+t :

2i0 :=



]. Execute one time step of length At on the coarse grid to produce (2_'' , ¢=/,.t-: l;

2. Execute two time steps of length At/2 on the fine grid to produce (! ,'.e : _h _. ,

using boundary values for _ interpolated from the coarse grid (in space and time)"

3. Copy the fine-grid solution to the coarse grid at points common to both.

Several points deserve mention here. First, in solving the implicit problem for _p on either grid,

we use the multigrid method outlined above. This introduces additional coarse grids, e.g., a grid

with mesh spacing 2h covering only the region of the local fine grid gt l' . In fact, the "underlying"

part of the coarse grid fF t' could be used for this; however, the resulting complications of

preserving interface values (for fine-grid boundary, values) and restricting relaxation to only part
of gt -'I' seem too high a price to pay for the relatively small savings in storage which would be

achieved. Second, after completing the above three steps, the resulting solution on the composite

grid _L = Fit, U __,h could be further refined by applying a composite-grid discretization of the

governing equations; this FAC (Fast Adaptive Composite grid) method and several variants are

described in (ref. 7), and will be explored in future work. Finally, the above approach generalizes

immediately to more than two grids.

For the initial work reported here, we have made the following simplifying assumptions. First,

we require the grids to be rectangular and strictly nested (i.e., any fine grid is contained wholly

within the interior of the next coarser grid), with one grid per level (i.e., the refinement occurs in

one region only, surrounding the vortex). Second, we use a constant mesh ratio of two (i.e., the

mesh spacing h on any grid is twice that of the next finer grid, if any). Finally, we will specify

the number of grids and their sizes in advance but allow them to move following the vortex as the
solution is computed.

Since the problem to be solved has an easily identifiable region of interest surrounding the

vortex, we take the following simple approach to moving the grids. First, we locate the vortex

center on the finest grid. Then for each grid in turn, from the next-to-coarsest to the finest, we

decide whether or not to move the grid. This decision is based on the distance of the vortex

center from the center of the grid: if it is more than a specified fraction a of the distance L to the

boundary, we move the grid. The move is calculated so as to "overshoot" a bit, i.e., aiming to put

the vortex center beyond the (new) grid center by a specified fraction 5 of the distance to the grid

boundary. Note that care must be taken at this stage to ensure the strict nesting of grids assumed

above. Finally, the grid is moved by shifting the values which remain on the grid and filling in

the rest by interpolation from the next coarser grid. For the results presented here, we check for

possible grid moves after each time step on the coarsest grid, and use the parameters a = 0.4 and
5=0.2.

To locate the vortex center (needed both for moving the grids as described above and for

determining the vortex track), we first locate the point of maximum vorticity on the finest grid. We

then interpolate the vorticity at that point and its nearest neighbors in x and y (five points total)
by a quadratic function, and define the vortex center to be the location of the maximum of that

quadratic.
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RESULTS

The initial conditionsfor the test problemconsistof anaxisymmetric vortex superimposedon
an environmentalflow, asconsideredin (ref. 1). The environmentMflow is givenby

=
(14)

which corresponds to the zonal current

_(y) =

The tangential wind in the initial vortex is given by

(r )exp[-a(r/r,_) b]V(r) = 2V,,, _ 1 + (r/r,,) _
(16)

where r = [(x - x,j) 2 + (y - y_,)2]_/2 is the radial distance from the vortex center (x,,, y,,). Note that

V has the approximate maximum value V,_ near r = r,,, (exact when a = 0); the exponential factor

is included to make V vanish quickly for large r. The vorticity corresponding to (16) is

--[i)(rV) V 2 - ab (17)
((r) -- -_r r 1 + (Tit,,,) _- "

We will use the following parameter values: fi0 = 10 ms -I and L -- 4000 km for the environmental

flow, and V,,, = 30ms -I , rr, -- 80km, a -- 10 -e'. and b = 6 for the initial vortex. The

computational domain is a square of side length 4000 km on a E-plane, using _ for the latitude

20 ° N; the vortex is initially centered at x0 = 750 km and y, = -750 km. The model was run from

t -- 0 to t = 72 hr; for simplicity we have set u = 0 and '7 = 0 here.

To establish a standard for comparison, we ran the model with high resolution (384 x 384 grid

with spacing h = 10.42 km and time step 10s). We then ran the model with a variety of grid

configurations (using up to four grids) and compared the vortex track to that of the reference run.

Table I summarizes these results, with the runs listed in order of increasing execution time (on a

SUN SPARCstation2). All of the cases in this table use only square grids, with N, = N:j = N. The
forecast error is defined as the distance between the predicted vortex location at a given time and

that in the reference run. These results show that the local refinement process has the potential to

substantially reduce the execution time required to achieve a given accuracy. For example, a single

grid with h = 31.25km (run 6) achieves errors on the order of 10-20km; with local refinement

(run 2) comparable accuracy is obtained with only about 36% as much computer time. Similarly, a

single grid with h = 20.83 km (run 8) achieves errors on the order of 1-5 km; with local refinement

(run 7) comparable accuracy is obtained with only about 42% as much computer time. In fact,
run 7 with local refinement achieved about the same accuracy as did the single-grid run with h =

151625 km (run 9) but with only about 18% of the computer time. In addition, the solution fields

produced with local refinement (run 7) are smooth, as shown in Figures 1-5, with no indication of

any problem due to the change of resolution at the grid interfaces.
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CONCLUDING REMARKS

The preliminary resultsreported hereshowthat adaptivemultigrid techniquescansubstantially
reducethe computertime required to makeaccuratehurricanetrack forecasts.In addition to
ongoingtesting of the existing model,weplan to investigatethe following possibleimprovements.
First, weplan to includethe FAC method asdiscussedabove.This shouldhavethe advantageof
morepreciseconservationof vorticity, enstrophy,and kinetic energyat the grid interfaces.Second,
we plan to constructa fully adaptiveversionof the modelby usingthe Full Approximation Scheme
(FAS) to produceestimatesof the local truncation error to be usedin an automatic grid refinement
scheme(asproposedin ref. 8). Finally, weplan to test the modelusingreal data, and compareits
performanceto that of modelscurrently in operationaluse.
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Table I. Results of Model Runs

Grid size(s) At Forecast error (km) at: Execution

Run g h (km) (rain) 24hr 48hr 72hr time (sec)

1 64 62.50 60 110 143 47 170

2 64 62.50 60 11 8 17 504

64 31.25 30

3 96 41.67 30 53 12 25 799

4 32 125.0 120 14 24 39 916

32 62.50 60

48 31.25 30

64 15.62 15

6 10 1,1745 64 62.50 60 1

64 31.25 30

64 15.62 15 -
_ r

6 128 31.25 30 11 8 19 1,409

7 64 62.50 60 1 5 5 2,047

64 31.25 30

96 15.62 15

8 192 20.83 20 1 3 5 4,860

9 256 15.62 15 2 3 4 11,405

10 384 10.42 10 - - - 41,716
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